A nonparametric Riemannian framework for processing high angular resolution diffusion images and its applications to ODF-based morphometry
نویسندگان
چکیده
High angular resolution diffusion imaging (HARDI) has become an important technique for imaging complex oriented structures in the brain and other anatomical tissues. This has motivated the recent development of several methods for computing the orientation probability density function (PDF) at each voxel. However, much less work has been done on developing techniques for filtering, interpolation, averaging and principal geodesic analysis of orientation PDF fields. In this paper, we present a Riemannian framework for performing such operations. The proposed framework does not require that the orientation PDFs be represented by any fixed parameterization, such as a mixture of von Mises-Fisher distributions or a spherical harmonic expansion. Instead, we use a nonparametric representation of the orientation PDF. We exploit the fact that under the square-root re-parameterization, the space of orientation PDFs forms a Riemannian manifold: the positive orthant of the unit Hilbert sphere. We show that various orientation PDF processing operations, such as filtering, interpolation, averaging and principal geodesic analysis, may be posed as optimization problems on the Hilbert sphere, and can be solved using Riemannian gradient descent. We illustrate these concepts with numerous experiments on synthetic, phantom and real datasets. We show their application to studying left/right brain asymmetries.
منابع مشابه
Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملLarge Deformation Diffeomorphic Metric Mapping of Orientation Distribution Functions
We propose a novel large deformation diffeomorphic registration algorithm to align high angular resolution diffusion images (HARDI) characterized by Orientation Distribution Functions (ODF). Our proposed algorithm seeks an optimal diffeomorphism of large deformation between two ODF fields in a spatial volume domain and at the same time, locally reorients an ODF in a manner such that it remains ...
متن کاملSegmentation of High Angular Resolution Diffusion MRI Modeled as a Field of von Mises-Fisher Mixtures
High angular resolution diffusion imaging (HARDI) permits the computation of water molecule displacement probabilities over a sphere of possible displacement directions. This probability is often referred to as the orientation distribution function (ODF). In this paper we present a novel model for the diffusion ODF namely, a mixture of von Mises-Fisher (vMF) distributions. Our model is compact ...
متن کاملNonnegative Definite EAP and ODF Estimation via a Unified Multi-shell HARDI Reconstruction
In High Angular Resolution Diffusion Imaging (HARDI), Orientation Distribution Function (ODF) and Ensemble Average Propagator (EAP) are two important Probability Density Functions (PDFs) which reflect the water diffusion and fiber orientations. Spherical Polar Fourier Imaging (SPFI) is a recent model-free multi-shell HARDI method which estimates both EAP and ODF from the diffusion signals with ...
متن کاملA Riemannian Framework for Orientation Distribution Function Computing
Compared with Diffusion Tensor Imaging (DTI), High Angular Resolution Imaging (HARDI) can better explore the complex microstructure of white matter. Orientation Distribution Function (ODF) is used to describe the probability of the fiber direction. Fisher information metric has been constructed for probability density family in Information Geometry theory and it has been successfully applied fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 56 3 شماره
صفحات -
تاریخ انتشار 2011